Implementing A Plant Growth Testing Program

A step-by-step guide for designing a simple, inexpensive, repeatable, and defensible plant growth test program to determine if Persistent Herbicides occur in your compost products. Please note that references to specific products are intended as visual examples and does not constitute endorsement by the USCC.

Background
Persistent Herbicides are invisible, and therefore, a compost producer’s only assessment option is to conduct plant growth testing and/or chemical analysis to determine if your finished compost affects sensitive plants. Several of the Compost Analysis Proficiency (CAP) certified laboratories provide plant growth testing (i.e., Bioassay Testing) and other labs provide chemical testing for Persistent Herbicide active ingredients aminoclopyrachlor, aminopyralid, clopyralid, and picloram. Certainly such testing is important but it is also important that a compost producer have direct knowledge of how your facility’s compost products perform. A plant growth testing program is the best way to achieve that knowledge.

Although one growth test by itself provides limited data, multiple plant growth tests over years will provide important data on suitability of your compost to grow Persistent Herbicide-sensitive plant species. Plant growth testing along with other best management practices (see Fact Sheet #2, Strategies to Mitigate Persistent Herbicide Contamination at Your Compost Facility) also provides proof that your facility has made reasonable efforts to assess and manage Persistent Herbicide contamination. If you do find evidence of Persistent Herbicide contamination, it will become important to eliminate or segregate contaminated feed stocks. Consider implementing a plant growth testing program as a supplement to your regular testing. Finally, also consider that plant growth testing is scalable and can be as simple as a single grow bench in your office, or as elaborate as a greenhouse such as the program at Green Mountain Compost operated by the Chittenden Solid Waste District in Williston, Vermont.

Materials List
- Plastic 5-gallon buckets, HDPE (2)
- Disposable gloves
- Distilled water
- Electrical Outlet. Must have at least 2 outlets for this grow test, one for seedling heating mat and one for the timer and light. Use a multi-outlet electrical cord with its own circuit breaker if a wall outlet is not available.
- Enclosure. Your plant growth tests will be more successful if you provide an enclosure to keep the whole trial contained and to maintain temperatures of 65° – 85° F and humidity above 50%. An enclosure for your indoor growth bench combined with lights and seedling heat mat will be enough to maintain those conditions inside the enclosure. There are many types of manufactured enclosures on the market but one can easily build one. The enclosure can be as simple as some heavy mill clear plastic sheeting. Another option is to repurpose a plastic covering from a cheap wardrobe rack that fits over a wire rack (Figure1). If you opt to build an enclosure, the plant growth test detailed in these methods can be contained within a wooden framed box of dimensions −24”(L) x −12”(W) x −24”(H) with clear plastic fastened to the sides.
- Fava bean seeds (sometimes referred to as “broad beans”). Many plants are sensitive to Persistent Herbicides but fava bean is a relatively large seed that is easy to handle, and that germinates and grows quickly.
- Lighting. A 24 inch two fluorescent lamp light will be sufficient. Example: Sun Blaze HO 22 http://growershouse.com/sun-blaze-t5-ho-fluorescent-light-fixture-2-ft-2-lamp. You will need a way...
Persistent Herbicides – Fact Sheet #3

Implementing A Plant Growth Testing Program | 2

Symptoms of Persistent Herbicide effects include leaf curling, malformed leaves, and lack of a central stem. Subtle symptoms usually result from low concentrations of herbicides or environmental factors but seeing these same traits over and over will build confidence over time. You may observe plant symptoms that indicate a deficiency in the growing media or growing conditions that are not related to Persistent Herbicide contamination. Such symptoms include yellowing leaves, poor germination, and differences in plant height.

Plant growth (i.e., bioassay) test results provide qualitative data but if you have ever seen a report from some CAP labs you will note that they often provide quantitative data or a “scale of phytotoxicity.” They develop these data by evaluating plants during many bioassay experiments with known concentrations of Persistent Herbicides. Woods End® Laboratories provides a good explanation on their website (https://woodsend.org/compost/herbicide-bioassay). This plant growth test should supplement bioassay, chemical, and your regular nutrient testing from a laboratory.

Step-By-Step Plant Growth Test Instructions

1. You will need at least one gallon of your cured compost for this plant growth test. Obtain compost using an appropriate subsampling procedure in a high-density polyethylene (HDPE) five-gallon bucket. First, fill a one-gallon Zip-lock bag, two-thirds full, label the bag with the date and any other information to identify this sample and plant growth test trial and store the sample in a freezer. Plan to keep the sample for 6 – 12 months. You can use this sample to retest or to send it to a lab for bioassay or chemical testing if you observe a problem. It would be a great idea to collect an additional sample at this time and send it to your testing lab as part of your regular nutrient testing.

This experiment will help a compost producer answer the question, “Do Persistent Herbicides contaminate my compost?” The methods require carefully controlled conditions (e.g., lighting, temperature, humidity, nutrients, etc.) to answer the question. The “experimental unit” is the growing media and these methods compare two mixtures. One mixture consists of 50% compost and 50% soil-less (compost free) planting media. The second growing media is 100% soil-less potting media. These methods recommend fava bean as a test subject. Fava bean is in the Leguminaceae (i.e., nitrogen-fixing legume) family of plants and they are susceptible to Persistent Herbicides down to a few parts per billion. There are many other sensitive plants that one could use such as clover, tomato, peas, and other beans but they may not be ideal due to small seed size, longer germination times, and slower growth rates. It is a good idea to utilize other plants in a long term plant growth experiment but these should be additions and not substitutions to your program and every additional plant species requires at least 6 more pots, 3 containing soil-less media and 3 containing the amended compost and soil-less media.

Figure 2. Use of light-duty chain and S-hooks to adjust the height of the fluorescent lamp (photo credit: Whitt Environmental Services)

A Note On The Science

This experiment will help a compost producer answer the question, “Do Persistent Herbicides contaminate my compost?” The methods require carefully controlled conditions (e.g., lighting, temperature, humidity, nutrients, etc.) to answer the question. The “experimental unit” is the growing media and these methods compare two mixtures. One mixture consists of 50% compost and 50% soil-less (compost free) planting media. The second growing media is 100% soil-less potting media. These methods recommend fava bean as a test subject. Fava bean is in the Leguminaceae (i.e., nitrogen-fixing legume) family of plants and they are susceptible to Persistent Herbicides down to a few parts per billion. There are many other sensitive plants that one could use such as clover, tomato, peas, and other beans but they may not be ideal due to small seed size, longer germination times, and slower growth rates. It is a good idea to utilize other plants in a long term plant growth experiment but these should be additions and not substitutions to your program and every additional plant species requires at least 6 more pots, 3 containing soil-less media and 3 containing the amended compost and soil-less media.

Symptoms of Persistent Herbicide effects include leaf curling, malformed leaves, and lack of a central stem. Subtle symptoms usually result from low concentrations of herbicides or environmental factors but seeing these same traits over and over will build confidence over time. You may observe plant symptoms that indicate a deficiency in the growing media or growing conditions that are not related to Persistent Herbicide contamination. Such symptoms include yellowing leaves, poor germination, and differences in plant height.

Plant growth (i.e., bioassay) test results provide qualitative data but if you have ever seen a report from some CAP labs you will note that they often provide quantitative data or a “scale of phytotoxicity.” They develop these data by evaluating plants during many bioassay experiments with known concentrations of Persistent Herbicides. Woods End® Laboratories provides a good explanation on their website (https://woodsend.org/compost/herbicide-bioassay). This plant growth test should supplement bioassay, chemical, and your regular nutrient testing from a laboratory.

Step-By-Step Plant Growth Test Instructions

1. You will need at least one gallon of your cured compost for this plant growth test. Obtain compost using an appropriate subsampling procedure in a high-density polyethylene (HDPE) five-gallon bucket. First, fill a one-gallon Zip-lock bag, two-thirds full, label the bag with the date and any other information to identify this sample and plant growth test trial and store the sample in a freezer. Plan to keep the sample for 6 – 12 months. You can use this sample to retest or to send it to a lab for bioassay or chemical testing if you observe a problem. It would be a great idea to collect an additional sample at this time and send it to your testing lab as part of your regular nutrient testing.
10 inch X 20 inch seedling heat mat

Figure 3. Sample layout for a six pot plant growth test experiment.

2. In a small clean dish, soak at least 24 fava bean seeds in distilled water.

3. Wear disposable gloves and mix your compost with the same volume of potting media to obtain a 50% compost: 50% potting soil mixture. Thoroughly blend the mixture using a trowel. The proper moisture will be when all water is absorbed in the media and firmly squeezing a handful produces some drops of water. Do not overwater. It may take some time for the potting mix to absorb water. Add small amounts of water until you achieve the proper moisture. Persistent herbicides are water soluble, and therefore, it is best to maintain the soil on the slightly dry side, fill individual pots (Step 6), and then water the pots rather than allow water to leach through the media and collect in the bottom of the bucket. Leave the second trowel in the bucket. Discard the gloves.

4. Wear a new set of disposable gloves. Fill another five gallon bucket approximately one third full with the soil-less potting media and thoroughly wet the media using distilled water and mix using a trowel. The proper moisture will be when all water is absorbed in the media and firmly squeezing a handful produces some drops of water. Do not overwater. It may take some time for the potting mix to absorb water. Add small amounts of water until you achieve the proper moisture. Although there should not be any persistent herbicides in the soil-less potting mix, it is important that both treatments are treated the same in all respects. Again, it is best to maintain the soil on the slightly dry side, fill individual pots (Step 7), and then water the pots rather than allow water to leach through the media and collect in the bottom of the bucket. Leave the second trowel in the bucket. Discard the gloves.

5. Prepare 6 tags as follows:
 - Compost fava bean 1, 2, and 3 (3 pots)
 - Control fava bean 1, 2, and 3 (3 pots)

6. Wear a new set of disposable gloves. Fill 3 pots with the compost soil mixture. Tap the bottom of each pot on a table to compress the material and place one of the 3 “Compost” tags into each pot. Plant four (4) fava bean seeds in four quadrants in each of the three “Compost Fava Bean” pots slightly deeper than one inch. Cover the seeds and lightly pack the soil with your fingers. Discard the gloves.

7. Repeat Step 6 with the soil-less potting media.

8. Place a clean saucer under all six pots and arrange the pots with saucers in an order similar to the diagram (Figure 3). It is important to position the pots in a way that spreads them throughout the array similar to the diagram. This helps ensure that other variables such as humidity, temperature, and light are relatively uniform for all pots.

9. Plug in the heating mat. Place the temperature and humidity monitor in the middle front of the experiment on a scrap piece of wood so that it is not sitting on the heating mat.

10. Take daily records and water the pots every day such that they are thoroughly moist but do not drain water to the saucers. Be careful not to over-water by dispensing small amounts of water until a minute amount of water exits the bottom of the pot into the saucer. Take care to avoid splashing water from one pot into another pot. IMPORTANT: Any excess water that drains through the pots and collects in the saucer should be used to water that same pot. Record seedlings as they germinate in daily notes (see sample data sheet).

11. After the first seed germinates, plug the lights into the timer set for 14 hours of light per day. Unplug the heating mats when no additional seeds germinate in 3 days. Keep in mind that failure to germinate is one possible effect of high concentrations of Persistent Herbicides and that you should keep track of seeds that fail to germinate. Adjust the height of the lights to approximately 12 inches above the height of the plants as they grow until the end of the experiment.

12. Allow another 2 – 3 days for the seedlings to show their relative vigor and then remove the two smallest seedlings such that only two seedlings remain in each pot. Note on the data sheet when you culled the seedlings.

13. Continue to water pots every day and take daily notes for approximately 30 days. Take pictures throughout the experiment because they will be useful to compare in future trails and because you can send them to experts that have seen thousands of plant experiments. Use a naming convention for

Symptoms of Persistent Herbicide effects include leaf curling, malformed leaves, and lack of a central stem. Subtle symptoms usually result from low concentrations of herbicides or environmental factors but seeing these same traits over and over will build confidence over time.
the picture files that you can easily decipher that includes the treatment (Compost or Control), the pot number (1, 2, or 3), and the date such as: Compost Bean1 = CstBean1_31Jan15.

14. At the end of the experiment, visually compare the Compost Fava Bean pots to the Control Fava Bean pots. Leaf curling, malformed leaves, and lack of a central stem are indicators of herbicide contamination. Take pictures of all pots including close-up pictures of suspected symptoms. Pictures with compost fava bean pots next to control fava bean pots will be especially useful for later comparison. Assess observed damage on some sort of relative scale such as severe damage (see Photos 4 and 5), moderate damage (see Photo 6), slight damage (see Photo 7), and no damage (see Control pot in Photos 4, 5, 6, or 7).

15. It is possible that you may observe nutrient effects that have nothing to do with Persistent Herbicide contamination. Your regular nutrient testing and your testing laboratory can assist you to assess this possibility. Symptoms such as leaf yellowing, marked differences in plant height, and deficient numbers of mature leaves are usually due to other factors such as nutrient deficiency or perhaps high electrical conductivity in the potting media. If you sent a sample of your compost to your soil lab at the beginning of the experiment, you will have results and this will allow an assessment of symptoms that may not be related to Persistent Herbicides. For more information, go to http://compostingcouncil.org/persistent-herbicides

For more information, go to http://compostingcouncil.org/persistent-herbicides
Concentration values at the top of the photos are the overall parts per billion concentration in the media.

Aminopyralid in Yard Trimming Compost
Aminopyralid in Dairy Manure Compost

Aminocyclopyrachlor in Yard Trimming Compost
Aminocyclopyrachlor in Dairy Manure Compost

Clopyralid in Yard Trimming Compost
Clopyralid in Dairy Manure Compost
Acknowledgments

This fact sheet was prepared by M. B. Whitt (Whitt Environmental Services, Prior Lake, MN, mike@whitt-es.com) and C. S. Coker (Coker Composting & Consulting, Troutville, VA, craigcoker@comcast.net). The authors acknowledge the significant and valuable contribution from Dan Goossen, Manager, Green Mountain Compost; and Frederick C. Michel, Jr., Associate Professor, Ohio State University. Graphic design and layout was provided by Hung Nguyen (nuendesign, Arlington, VA, hung@nuendesign.com). Reviewers included Preston Lee, Wasatch Integrated Waste Management District; Cami L. P. Whitt; and Kay Yanish, K-Post, LLC.

About the USCC: The United States Composting Council (USCC) is a national not-for-profit organization dedicated to the development, expansion and promotion of the composting industry. For more information visit www.compostingcouncil.org

Disclaimer: Neither the USCC, nor any of its employees, contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, equipment, product, or process discussed herein. Reference to any specific commercial product, process, or service by trade name, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement or recommendation by the USCC.

US Composting Council
5400 Grosvenor Lane | Bethesda, MD 20814
phone: 301-897-2715 | fax: 301-530-5072
email: uscc@compostingcouncil.org

Copyright © 2015 The United States Composting Council